Compound (5)

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$
$M_{r}=196.24$
Monoclinic
$P 2_{1} / n$
$a=6.675$ (6) A
$b=20.767(19) \AA$
$c=7.109$ (7) \AA
$\beta=106.08$ (6) ${ }^{\circ}$
$V=946.9(15) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 17
reflections
$\theta=7.55-17.97^{\circ}$
$\mu=0.099 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Irregular plate
$0.50 \times 0.30 \times 0.05 \mathrm{~mm}$ Colorless
$D_{x}=1.377 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer
ω scans
Absorption correction: none
3130 measured reflections
1856 independent reflections
969 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.0664$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0650$
$w R\left(F^{2}\right)=0.1473$
$S=1.051$
1818 reflections
135 parameters

$$
\begin{aligned}
& \theta_{\max }=26.01^{\circ} \\
& h=-8 \rightarrow 6 \\
& k=-19 \rightarrow 25 \\
& l=-8 \rightarrow 8 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \text { intensity decay: } 3.82 \%
\end{aligned}
$$

$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.163 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.185 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)
$+0.1598 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (5)

$U_{\text {eq }}=(1 / 3) \sum_{i} \Sigma_{j} U^{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Ol	0.6823 (4)	0.02272 (12)	1.3418 (3)	0.0558 (7)
02	0.0439 (4)	0.05938 (12)	0.7716 (3)	0.0479 (7)
03	0.7011 (4)	0.10522 (13)	1.5351 (4)	0.0641 (9)
Cl	0.4258 (4)	0.10552 (14)	1.2473 (4)	0.0292 (7)
C2	0.3296 (4)	0.06444 (15)	1.0677 (4)	0.0347 (8)
C3	0.1420 (4)	0.09863 (15)	0.9379 (4)	0.0323 (8)
C4	-0.0178 (5)	0.1101 (2)	1.0465 (5)	0.0398 (9)
C5	0.0766 (5)	0.1517 (2)	1.2245 (5)	0.0395 (8)
C6	0.1425 (5)	0.2148 (2)	1.1602 (5)	0.0444 (9)
C7	0.3020 (5)	0.2037 (2)	1.0503 (5)	0.0406 (9)
C8	0.4902 (5)	0.17021 (14)	1.1812 (5)	0.0360 (8)
C9	0.2087 (5)	0.1617 (2)	0.8726 (4)	0.0401 (8)
C10	0.2647 (5)	0.1171 (2)	1.3577 (4)	0.0393 (8)
C11	0.6143 (5)	0.0728 (2)	1.3773 (4)	0.0368 (8)

Table 4. Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$ for (5)

$\mathrm{O} 1-\mathrm{Cl1}$	$1.190(4)$	$\mathrm{O} 3-\mathrm{Cl1}$	$1.299(4)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.436(4)$	$\mathrm{Cl}-\mathrm{Cl1}$	$1.501(4)$
$\mathrm{O} 1-\mathrm{Cl1}-\mathrm{O} 3$	$122.1(3)$	$\mathrm{O} 3-\mathrm{Cl1}-\mathrm{Cl}$	$113.3(3)$
$\mathrm{O}-\mathrm{Cll}-\mathrm{Cl}$	$124.7(3)$		

The title structures were solved by direct methods and refined successfully in space groups $P n m a$ and $P 2_{1} / n$ for (4) and (5), respectively. Full-matrix least-squares refinement was carried
out by minimizing $w\left(F_{o}^{2}-F_{c}^{2}\right)^{2}$. The non-H atoms were refined anisotropically to convergence. H atoms were refined freely for (4) and only the H atoms connected to O were refined for (5). The other H atoms were treated using appropriate riding models.

For both compounds, data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structures: SHELXS86 (Sheldrick, 1990); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTLPlus (Sheldrick, 1995); software used to prepare material for publication: SHELXTL-Plus.

The authors gratefully acknowledge grant CHE9101834 from the National Science Foundation for the purchase of X-ray diffraction equipment. The project described was supported by grant number ESO1984 from the National Institute of Environmental Health Sciences, NIH. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK 1307). Services for accessing these data are described at the back of the journal.

References

Anderson, G. L., Burks, W. A. \& Harruna, I. I. (1988). Synth. Commun. 18, 1967-1974.
Murray, R. W. \& Gu, H. (1995). J. Org. Chem. 60, 5673-5677.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1995). SHELXTL-Plus. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. X-ray Single Crystal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1997). C53, 946-950

Three trans-Diphenylperfluorotrienes

Dale C. Swenson, Peter A. Morken and Donald J. Burton

Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA. E-mail: swensond@chem-po.chem.uiowa.edu

[^0]tetradecafluoro-4,7-diphenyl-4,5,6-decatriene, $\mathrm{C}_{22} \mathrm{H}_{10} \mathrm{~F}_{14}$, confirm the trans conformation assigned by spectrophotometric methods. These trienes exhibit the central double-bond shortening observed in cumulenes. The phenyl rings are rotated slightly from the triene plane in (2) and (3) and are nearly perpendicular to the triene plane in (1). The large rotation of the perfluorophenyl rings from the triene plane is due to intramolecular steric interactions with the ortho-F atoms.

Comment

$(R 1)(R 2) \mathrm{C}=\mathrm{C}(\mathrm{ZnBr})(\mathrm{Br})$ (where $R 1$ is $\mathrm{CF}_{3}, \mathrm{C}_{2} \mathrm{~F}_{5}$ or $\mathrm{C}_{3} \mathrm{~F}_{7}$ and $R 2$ is $\mathrm{C}_{6} \mathrm{H}_{5}$ or $\mathrm{C}_{6} \mathrm{~F}_{5}$) dimerizes in the presence of catalytic amounts of CuBr to give the E and Z isomers of $(R 1)(R 2) \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}(R 1)(R 2)$ in high yields (Morken, Bachand, Swenson \& Burton, 1993). The isomers were separated by chromatography and/or fractional recrystallization and tentatively assigned by spectrophotometric methods. The isomers that exhibited $\lambda_{\text {max }}$ at longer wavelengths with a larger extinction coefficient, ε, were assigned the trans conformation. These assignments were confirmed by the structures of (1), (2) and (3).

(1)

(2)

(3)

Each of the triene molecules is on a crystallographic center of symmetry. The middle ($\mathrm{Cl}=\mathrm{C}^{\prime}$) double bond for each of the trienes is significantly shorter than the outside $(\mathrm{Cl}=\mathrm{C} 2)$ double bond. This situation has been noted in previous studies (Berkovitch-Yellin \& Leiserowitz, 1977; Tinant, Declercq, Bouvy, Janousek \& Viehe, 1993; Morken et al., 1991). The plane of the phenyl ring ($\mathrm{C} 3-\mathrm{C} 8$) is rotated somewhat from the triene plane ($\mathrm{C} 1-\mathrm{C} 3, \mathrm{C} 9$) for (2) and (3). The dihedral angles are $16.9(2)^{\circ}$ for (2) and 7.4 (6) ${ }^{\circ}$ for (3). The dihedral angle between the perfluorophenyl ring and the triene plane for (1) is $90.4(2)^{\circ}$. The intramolecular steric interactions between the ortho- F atoms and the

C9-methyl F atoms [F4-F9C $=3.132$ (4) $\AA, \mathrm{F} 8-\mathrm{F} 9 B$ $=3.067$ (4) \AA] and between the triene C 2 atom and the ortho- F atoms [$\mathrm{C} 2-\mathrm{F} 4=2.826(4) \AA$ and $\mathrm{C} 2-\mathrm{F} 8=$ 2.816 (4) \AA] force the phenyl ring to be perpendicular to the plane of the triene atoms.

Fig. 1. ORTEPII (Johnson, 1976) diagrams of the title compounds with displacement ellipsoids drawn at the 35% level: (a) compound (1), (b) compound (2), (c) compound (3).

Fig. 2. Packing diagrams of the title compounds: (a) compound (1), (b) compound (2), (c) compound (3).

Molecules of compounds (2) and (3) pack similarly in the solid state. These molecules stack in a tilted manner to form columns along the a direction for (2) and along the c direction for (3) (these are the short dimensions in each case). The tilt of the molecules alternates in a herringbone fashion for (3). The molecules of (1) form stacks of molecules along the b direction. The phenyl rings from adjacent stacks overlap in an alternating fashion to interleave the stacks.

The $\mathrm{Cll}-\mathrm{CF}_{3}$ group is rotationally disordered. The occupancy of the major site ($\mathrm{F} 11 A, \mathrm{~F} 11 B, \mathrm{~F} 11 \mathrm{C}$) refined to $0.62(2)$. The occupancy of the minor site ($\mathrm{F} 11 D$, $\mathrm{F} 11 E, \mathrm{~F} 11 F)$ is 0.38 . Cll is common to both sites.

Experimental

The details of compound preparation and crystallization are given in Morken, Bachand, Swenson \& Burton (1993).

Compound (1)

Crystal data
$\mathrm{C}_{18} \mathrm{~F}_{16}$
$M_{r}=520.18$
Triclinic
$P \overline{1}$
$a=5.7009(8) \AA$
$b=10.509$ (2) \AA
$c=9.420(2) \AA$
$\alpha=123.78(1)^{\circ}$
$\beta=102.66(1)^{\circ}$
$\gamma=94.08(1)^{\circ}$
$V=444.5(4) \AA^{3}$
$Z=1$
$D_{x}=1.94 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: none 7799 measured reflections 3900 independent reflections 1395 reflections with

$$
I>2 \sigma(I)
$$

$$
R_{\mathrm{int}}=0.031
$$

Refinement

Refinement on F
$R=0.053$
$w R=0.061$
$S=1.031$
1395 reflections
154 parameters
Weighting scheme based
on measured e.s.d.'s
(Killean \& Lawrence, 1969)

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10-17^{\circ}$
$\mu=0.223 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism
$0.42 \times 0.30 \times 0.25 \mathrm{~mm}$ Colorless
$\theta_{\text {max }}=35^{\circ}$
$h=-9 \rightarrow 9$
$k=-16 \rightarrow 16$
$l=-15 \rightarrow 15$
4 standard reflections frequency: 240 min intensity decay: 9.06% [linear correction, MolEN (Fair, 1990)]
$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\text {max }}=0.28 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=0.05 \mathrm{e}^{\AA^{-3}}$
Extinction correction: none
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (1)

$\mathrm{Cl}-\mathrm{C} 1^{\mathrm{i}}$	$1.252(6)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.486(4)$
$\mathrm{Cl}-\mathrm{C} 2$	$1.316(4)$	$\mathrm{C} 2-\mathrm{C} 9$	$1.494(4)$
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2$	$179.4(4)$	$\mathrm{C} 2-\mathrm{C} 2-\mathrm{C} 9$	$120.2(3)$
$\mathrm{C} 2-\mathrm{C} 2-\mathrm{C} 3$	$122.5(3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 9$	$117.2(2)$

Symmetry code: (i) $1-x, 1-y, 1-z$.

Compound (2)
Crystal data
$\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{~F}_{10}$
CuK K radiation
$M_{r}=440.29$
Triclinic
$P \overline{1}$
$a=5.8990$ (7) \AA
$b=9.509$ (1) \AA
$c=9.304(1) \AA$
$\alpha=102.75(1)^{\circ}$
$\beta=94.62(1)^{\circ}$
$\gamma=115.92(1)^{\circ}$
$V=448.4$ (3) \AA^{3}
$Z=1$
$D_{x}=1.63 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4
diffractometer
$\theta / 2 \theta$ scans
Absorption correction:
ψ scans, MolEN (Fair, 1990)
$T_{\text {min }}=0.651, T_{\text {max }}=0.719$
3681 measured reflections
1841 independent reflections

Refinement

Refinement on F
$R=0.042$
$w R=0.067$
$S=1.194$
1659 reflections
156 parameters
All H -atom parameters refined

Monoclinic
$P 2_{1} / c$
$a=10.2071 \AA$
$b=17.6882 \AA$
$c=5.9376 \AA$
$\beta=97.52^{\circ}$
$V=1062.78 \AA^{3}$
$Z=2$
$D_{x}=1.68 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection
Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: none
5445 measured reflections
1856 independent reflections
1238 reflections with
$I>2 \sigma(I)$
$R_{\mathrm{int}}=0.090$

Refinement

Refinement on F
$R=0.052$
$w R=0.065$
$S=1.057$
1238 reflections
191 parameters
H atoms refined, $U=1.3$ $\times U$ of bonding atom
Weighting scheme based
on measured e.s.d.'s (Killean \& Lawrence, 1969)

Cell parameters from 25 reflections
$\theta=5-14^{\circ}$
$\mu=0.184 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$
Plate
$0.31 \times 0.28 \times 0.09 \mathrm{~mm}$
Light green

$$
\begin{aligned}
& \theta_{\text {max }}=25.00^{\circ} \\
& h=-7 \rightarrow 7 \\
& k=-17 \rightarrow 21 \\
& l=-12 \rightarrow 12
\end{aligned}
$$

4 standard reflections frequency: 240 min intensity decay: 2.06\% [linear correction, MolEN (Fair, 1990)]

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.033 \\
& \Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.09 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: isotropic (Zachariasen, 1963)

Extinction coefficient: 0.74 $\times 10^{-6}$
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 3. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (3)

$\mathrm{Cl}-\mathrm{Cl}^{\mathrm{i}}$	$1.253(6)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.474(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.329(4)$	$\mathrm{C} 2-\mathrm{C} 9$	$1.523(4)$
$\mathrm{Cl}-\mathrm{Cl}-\mathrm{C} 2$	$178.5(4)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 9$	$115.3(3)$
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	$122.1(2)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 9$	$122.5(2)$

Symmetry code: (i) $2-x, 1-y,-z$.
Backgrounds were obtained from analysis of the scan profile (Blessing, Coppens \& Becker, 1974)

For all compounds, data collection: CAD-4 Software (EnrafNonius, 1977); cell refinement: CAD-4 Software; data reduction: PROCESS MolEN (Fair, 1990); program(s) used to solve structures: direct methods (MULTAN; Main et al., 1980); program(s) used to refine structures: LSFM MolEN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: CIF VAX MolEN.

DJB thanks the National Science Foundation for support of this work.

Compound (3)

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{22} \mathrm{H}_{10} \mathrm{~F}_{14} & \text { Mo } K \alpha \text { radiation } \\
M_{r}=540.3 & \lambda=0.71073 \AA
\end{array}
$$

$\mathrm{C} 1-\mathrm{C} 1^{i}$	$1.245(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.478(2)$
$\mathrm{C}-\mathrm{C} 2$	$1.334(2)$	$\mathrm{C} 2-\mathrm{C} 9$	$1.517(2)$
$\mathrm{C} 1^{i}-\mathrm{C} 1-\mathrm{C} 2$	$178.9(2)$	$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 9$	$115.1(1)$
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	$122.2(1)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 9$	$122.6(1)$

Symmetry code: (i) $-x, 1-y, 2-z$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: PA1195). Services for accessing these data are described at the back of the journal.

References

Berkovitch-Yellin, Z. \& Leiserowitz, L. (1977). Acta Cryst. B33, 3657-3669.
Blessing, R. H., Coppens, P. \& Becker, P. (1974). J. Appl. Cryst. 7, 488-492.
Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Killean, R. C. G. \& Lawrence, J. L. (1969). Acta Cryst. B25, 17501752.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
Morken, P. A., Bachand, P. C., Swenson, D. C. \& Burton, D. J. (1993). J. Am. Chem. Soc. 115, 5430-5439.

Morken, P. A., Baenziger, N. C., Burton, D. J., Bachand, P. C., Davis, C. R., Pedersen, S. D. \& Hansen, S. W. (1991). J. Chem. Soc. Chem. Commun. pp. 566-567.
Tinant, B., Declercq, J., Bouvy, D., Janousek, Z. \& Viehe, H. G. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 911-915.

Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1997). C53, 950-951

Methyl 2-Aza-2-deoxy-4,6-di-O-methyl-2-N-(\boldsymbol{p}-nitrophenylamino)- β-D-erythro-hexo-pyranosid-3-ulose

Gérald Bernardinelli, ${ }^{a}$ Jeannine F. Tronchet ${ }^{b}$ and Jean M. J. Tronchet ${ }^{b}$
${ }^{a}$ Laboratoire de Cristallographie, Université de Genève, 24 Quai E. Ansermet, CH-1211 Genève 4, Switzerland, and
${ }^{b}$ Département de Chimie Pharmaceutique, Université de Genève, CH-12I2 Genève 4, Switzerland. E-mail: gerald. bernardinelli@cryst.unige.ch

(Received 12 December 1996; accepted 5 February 1997)

Abstract

All asymmetric C atoms of the title compound, $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{7}$, are in the R configuration. The azapyranose ring adopts a half-chair conformation with substituents in equatorial and quasi-equatorial positions. The molecular packing is fixed by hydrogen bonds involving the amino group and one of the methoxy substituents.

\section*{Comment}

Six-membered sugar lactams can be obtained by oxidative ring enlargement of furanose p-nitrophenyl hydrazones (Tronchet, Tronchet, Rachidzadeh, Barbalat-

Rey \& Bernardinelli, 1988). The reaction proceeds generally regioselectively and the configuration of the existing asymmetric \mathbf{C} atoms is preserved. These compounds are potential glycosidase inhibitors (Look, Fotsh \& Wong, 1993). The title compound has been prepared (Tronchet, Tronchet, Barbalat-Rey \& Bernardinelli, 1997) from methyl 2-deoxy-3,5-di- O-methyl-$2-(p$-nitrophenylhydrazono)- β-D-erythro-pentofuranoside which was oxidized (lead tetraacetate) to an epimeric mixture of azoacetates, which upon saponification of their ester function underwent a base-catalyzed ring enlargement. X-ray analysis was deemed necessary to assess the geometrical features of this new type of sugar analogue which has an anomeric center of the unusual orthoester type, particularly its solid-state conformation, and to confirm the configuration established by ${ }^{1} \mathrm{H}$ NMR. Despite numerous attempts at crystallization only very fine needle crystals could be obtained.

(I)

Since the configuration at the C 3 atom is known (R) and preserved during the regioselective synthesis, the absolute configuration of the molecule is well determined as $2 R, 3 R, 4 R$. The minimum value of the asymmetry parameters (Nardelli, 1983) shows that the azapyranose ring adopts a half-chair conformation with a pseudo-twofold axis passing through the $\mathrm{O} 1-\mathrm{C} 3$ bond $\left[\Delta C_{2}(\mathrm{Ol}-\mathrm{C} 3)=0.012(5)\right]$. The substituents at C 2 and C 4 are located in quasi-equatorial positions whereas the methoxymethyl group at C3 is equatorial. In the crystal the molecules are associated in chains along the b axis by hydrogen-bond interactions involving the amino group and the anomeric methoxy group at C4 $[\mathrm{N} 2 \cdots \mathrm{O}(x, y-1, z)=2.89(1) \AA ; \mathrm{N} 2-\mathrm{H} 02 \cdots \mathrm{O}=$ $138.2(4)^{\circ}$].

Fig. 1. View of the title compound with atomic labelling. Ellipsoids are represented at the 40% probability level.

[^0]: Abstract
 The structures of $(E)-1,1,1,6,6,6$-hexafluoro-2,5-bis-(pentafluorophenyl)-2,3,4-hexatriene, (1), $\mathrm{C}_{18} \mathrm{~F}_{16}$, (E) -1,1,1,2,2,7,7,8,8,8-decafluoro-3,6-diphenyl-3,4,5 ictatriene, (2), $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{~F}_{10}$, and (E)-1,1,1,2,2,3,3,8,8,9, $, 10,10,10-$

